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SUMMARY

This paper deals with the problem of using sensitivity analysis for fluid mechanics solutions to the
constants of the standard k–� method for 2D, incompressible and steady flows. The problem is described
and analysed on the basis of a channel flow. Sensitivity coefficients of the following properties were
determined: a pressure, two components of a velocity, a turbulence kinetic energy, a dissipation rate of
turbulence kinetic energy and a turbulence dynamic viscosity. The calculated property values depend on
five model constants that are parameters of the sensitivity analysis in this paper. Sensitivity coefficients
are derivatives of the above properties, for individual parameters. In this paper these coefficients are
determined using a finite difference approximation to the sensitivities coefficients.

The author of this paper compares three models of the boundary layer with regard to the sensitivity of
properties to the parameters. Irrespective of the boundary layer model used here, the analysis of sensitivity
coefficients for the channel flow properties shows that the most sensitive property is the turbulence
dissipation rate. Next properties of consequence, although of significantly smaller values of sensitivity
coefficients, are the turbulence viscosity and the turbulence kinetic energy. All flow properties are mostly
sensitive to the C� parameter. One of the final conclusions in this paper is that the analysis of sensitivity
coefficient fields allows the reliable checking of results and indicates those areas most prone to calculation
difficulties. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The k–� model is often used to model turbulence of a flow in computational fluid dynamics
problems. The application of this method to obtain correct results requires the evaluation of semi-
empirical coefficients for the model. These coefficients are called ‘constants’ in the literature.
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Numerous versions of this model have been developed since the 1970s, when the standard version
model was popularized by Launder and Spalding (comp. [1, 2]) and others. Unfortunately, the new
turbulence models of the k–� type also include ‘constants’ calibrated on the basis of measurements,
theoretical analyses and the experience of the computer program users. The largest number of
papers concerning the k–� model were written in the 1990s. In spite of the fact that turbulence
models based on the LES method are currently being developed, k–� turbulence models are still
in common use within commercial programs. As users of the k–� turbulence model know its
constraints, they are able to avoid them. It is anticipated, therefore, that the new flow modelling
methods (such as LES or DVM) will be an alternative to the k–� method for as long as research
devoted to adjusting the old method to new issues remains useful. On the other hand, over
10 different sets of values for these ‘constants’ may be found in the literature (comp. [3, 4]),
indicating that the selection of ‘constants’ is still a serious problem. This is one of the reasons
why using sensitivity analysis to check the influence of the selection of ‘constants’ for the k–�
model has been presented in this paper. As ‘constants’ of the k–� model are not constant and
they are input data of the sensitivity analysis, they are called parameters of the k–� model in this
paper.

This paper consists of two parts. The first part includes a description of methods used
in order to obtain the sensitivity coefficients, whereas the second part presents the results
of the sensitivity analysis for the channel flow that will be used to check the method of
modelling the boundary layer with the FLUENT program, paying special attention to reliability
of the turbulence model parameters (constants) used. The method discussed will be presented
with the example of the standard of the k–� model for steady incompressible flows in a
channel.

2. THE k–� TURBULENCE MODEL

2.1. Equations and parameters for the k–� model

The sensitivity analysis problems will be presented on the basis of the standard k–� turbulence
model (comp. [1, 2] and others) for the channel flow that is treated as incompressible fluids. In
this method, flow properties may be described with the following system of differential equations:

• continuity equation:

∇ ·u=0 (1)

• Navier–Stokes equation:

�

(
�
�t
u+(u·∇)u

)
=−∇p+(�+�t )�u (2)

• turbulence kinetic energy equation:

�

(
�k
�t

+(u·∇)k

)
=
(

∇ �t
�k

)
·(∇k)+ �t

�k
�k+�Pk−�� (3)
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• dissipation rate of the turbulence kinetic energy equation:

�

(
��

�t
+(u·∇)�

)
=
(

∇�t
��

)
·(∇�)+ �t

��
��+�C�1Pk

�

k
−�C�2

�2

k
(4)

• equation of the turbulence dynamic viscosity:

�t =�C�
k2

�
(5)

where p is the pressure, u=[u1 u2 u3]T is the velocity vector, k is the turbulence
kinetic energy, � is the dissipation of a turbulence kinetic energy, �t is the turbulence
dynamic viscosity, t is the time, �=1.225kg/m3 is the air density, �=2.192×10−5Ns/m2

is the dynamic viscosity, ∇=[�/�x1 �/�x2 �/�x3] is the Hamilton operator, �=∇2=
�2/�x21 +�2/�x22 +�2/�x23 is the Laplace operator, �Pk =�t S

2 is the turbulence energy
production, S is the modulus of the mean rate-of-strain tensor, defined as S≡√2si j si j and
si j =1/2(�ui/�x j +�u j/�xi ), and C�1,C�2,C�,�k and �� are the parameters of the k–�
model.

According to the assumptions of the k–� turbulence method, flow properties present in the
system of equations are time-averaged values. The above equations were obtained using the simpli-
fying assumptions: Reynolds averaging, Boussinesq hypothesis, Prandtl hypothesis based on the
Ficks law [5] and Kolmogorows hypothesis of the turbulence local isotropy [6]. The effect of
introducing these hypotheses is the presence of the model parameters in the equations. Although
in the literature these parameters are called ‘constants’, their values are adjusted to different prob-
lems. The calibration of the parameters has been described by Bottema [7], Comte-Bellot and
Corrsin [8], Hrenya et al. [3], Launder and Spalding [1, 2], Shih [9] and many others. Nowadays,
the most frequently used set of parameter values is as follows: C� =0.09,C�1=1.44,C�2=1.92,
�k =1.0 and �� =1.3. They are also the values of parameters recommended by FLUENT, whose
results will be presented below. In order to show that the sensitivity analysis of the flow prop-
erties to model parameters is necessary, the bases for the calibration of each value are described
below.

This short description of the calibration method will start with the C� parameter. This quantity
is based on the assumption of equilibrium between the turbulence energy production and the
turbulence dissipation rate near the walls. According to Launder and Spalding [1], this value
is included in the range C� ∈(0.0625;0.09). Yet, Shih [9] gave values in the range from C� =
0.05 (with homogeneous flow away from the wall) to C� =0.09 (at flat wall), and Bottema [7]
suggested even smaller value for atmospheric flows, i.e. C� =0.03, in the atmospheric turbulence
conditions.

Another C�1 parameter describes a relationship between dissipation production and turbulence
energy production. The C�1 parameter is determined based on fairly complicated measurements,
preferably taken in the boundary layer, and the results of which should be the turbulence kinetic
energy, the dissipation rate and the components of strain rate tensor. In papers [3, 4, 10, 11] devel-
oping the problem of calculations made with the k–� model, the C�1 parameter is between 1.15
and 1.5.

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 58:1257–1286
DOI: 10.1002/fld



1260 E. BŁAZIK-BOROWA

If the isotropic homogeneous turbulence (for high Reynolds numbers) is assumed, the average
stress field and diffusion disappear (comp. [12]) and the kinetic energy and dissipation rate equations
(comp. Equations (3) and (4)) are reduced to simple differential equations:

dk

dt
=−� (6)

d�

dt
=−C�2

�2

k
(7)

The following equation is the solution to the above system of equations (comp. [13]):

k(t)=k0

{
1+(C�2−1)

�0
k0

t

}−n

(8)

where

n= 1

C�2−1
(9)

The n value is obtained from the measurements of changes in the turbulence kinetic energy over
time for high Reynolds number. Comte-Bellot and Corrsin [8] obtained values of n between 1.2
and 1.3, whereas Mohamed and Larue [14] obtained values between 1.08 and 1.3. In relation to
the second, larger range, the C�2 parameter assumes the values C�2∈(1.77;1.93), whereas other
literature mentions values for this parameter between 1.68 (comp. [11]) and 2.0 (comp. [15]).

The following paragraphs will describe the �k and �� parameters, known as Schmidt (Prandtl)
numbers. Launder and Spalding [1] performed a detailed analysis of this quantity, based on
measurements. Graphs presented in their papers reveal that �k assumes values between 0.5 (in the
free stream) and 1.75 (near the wall). In relation to some flows, e.g. pipe flows, the values fluctuate
between 0.7 and 1.0, depending on the Reynolds number. There is also a relationship between the
Schmidt number �k and a flow velocity. It is possible to state that �k is smaller at smaller velocities.
Nevertheless, Launder and Spalding [1] gave its most probable value at �k =1.0, although in the
literature numbers between 0.61 and 1.36 are mentioned.

The Schmidt number �� calibration is done in relation to the flow near the wall and is based
on the assumption that velocity changes according to the following logarithmic function in this
area:

ut
u�

= 1

�
ln
(
E
u�

�
y
)

(10)

where �=0.4187 is the Kármán constant, E=9.81 is the empirical constant, ut is the component
of velocity along the wall, u� is the shear velocity, y is the distance to the wall and � is the kinetic
viscosity.

The following equation is obtained through the use of many reductions, including those that
contain approximate dimensionless relationships between quantities proportional to each other:

�� =
�2/

√
C�

(C�2−C�1)
(11)

The above equation includes most of the k–� model parameters. The value of �� depends largely
on their evaluation, which is often made on the basis of measurements. Bottema [7], on the
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basis of his literature studies, claims that �� ∈(1.3;2.38), but smaller values, such as 0.75, are
suggested.

It is notable that the span of the C�1,C�2,C�,�k and �� values is very large, and hence calling
them ‘constants’ is rather doubtful. For that reason, the term ‘constants’ is replaced by parameters
in this paper and the quantities are treated as variables of functions describing the flow properties.
This may allow the determining of derivatives for the properties in relation to the parameters, i.e.
determining sensitivity coefficients.

2.2. Boundary layer models

In the second part of this paper, the results of sensitivity analyses of problems solved using
FLUENT 6.1.18 will be compared with each other. Three methods of modelling the boundary
layer will be used for solving the problems:

• boundary layer model no. 1 in which the flow velocity is described by Equation (10) and the
dissipation rate by the following:

�= C3/4
� k3/2

�xn
(12)

an equilibrium between the production and the dissipation rate is assumed; these assumptions
are used for the first layer of volumes nearest the wall;

• boundary layer model no. 2 in which a velocity profile is assumed to be similar to model
no. 1 but the assumption of equilibrium between the production and the dissipation rate of
the turbulence kinetic energy is omitted;

• boundary layer model no. 3 in which the value of Reynolds number Re is checked for each
volume; if Re<200, the single-equation Wolfstein model [16] is used to describe the flow
movement; if Re>200, the whole k–� turbulence model is used.

3. SENSITIVITY ANALYSIS

The sensitivity analysis is a method used to examine the influence of changing input parameters
on results. To date it has been widely used in solid mechanics and in structural mechanics (comp.
[17]), but recently it has been used in fluid mechanics as well, e.g. for examining the influence of
the geometric parameters of pipes on flow properties (comp. [18]), and as a tool for considering the
cooperation of a moving body and the fluid surrounding it [19]. In this paper, the sensitivity analysis
is used to examine how changing the parameters of the k–� model influences the calculation results
of the flow. The manner of application of the sensitivity analysis was created by the author [20] and
the group of Pelletier (comp. Colin et al. [21]) at the same time, but Pelletier with collaborators
published their results first.

It is worth remembering that the flow may be described with the following property fields: the
pressure p, the velocity components u1,u2,u3 (two in 2D problems and three in 3D problems),
the turbulence kinetic energy k, the turbulence dissipation rate � and the turbulence dynamic
viscosity �t . The determination of flow properties will be called the main problem. At the same
time, in (1)–(5) model equations for the standard k–� model (in which buoyancy and temperature
are not taken into account) there are five parameters: C�1,C�2,C�,�k and ��. The sensitivity of the
properties to the parameters is derivatives, which may be set into the following matrix in relation
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to one point of fields in a 2D problem:

J=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p̃C�1 p̃C�2 p̃C� p̃�k p̃��

ũ1C�1 ũ1C�2 ũ1C� ũ1�k ũ1��

ũ2C�1 ũ2C�2 ũ2C� ũ2�k ũ2��

k̃C�1 k̃C�2 k̃C� k̃�k k̃��

�̃C�1 �̃C�2 �̃C� �̃�k �̃��

�̃C�1
�̃C�2

�̃C�
�̃�k �̃��

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�p
�C�1

�p
�C�2

�p
�C�

�p
��k

�p
���

�u1
�C�1

�u1
�C�2

�u1
�C�

�u1
��k

�u1
���

�u2
�C�1

�u2
�C�2

�u2
�C�

�u2
��k

�u2
���

�k
�C�1

�k
�C�2

�k
�C�

�k
��k

�k
���

��

�C�1

��

�C�2

��

�C�

��

��k

��

���

��t
�C�1

��t
�C�2

��t
�C�

��t
��k

��t
���

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(13)

The sensitivity coefficients, such as the flow properties, make a field within the whole calculation
area. A particular set (e.g. of 30 coefficients in 2D problems) of coefficient fields corresponds to
a particular set of parameters.

The fields of the sensitivity coefficients may be determined using a finite difference approx-
imation to the sensitivity coefficients or the forward sensitivity analysis. The finite difference
approximation consists in calculating flows at the values next to the value of the parameter being
analysed, and then determining the sensitivity coefficients with the following equation:

s̃m = w2−w1

�Cm
(14)

where Cm is the examined parameter and w1,w2 are the results of calculations at Cm−�Cm/2
and Cm+�Cm/2, respectively. In further analyses, the �Cm increment is equal to one order bigger
than the order of rounding the parameter in the main problem, it is �C�1=�C�2=��k =��� =0.1,
�C� =0.01.

The second method of determining the sensitivity coefficients consists in differentiating equations
(1)–(5) describing the problem, with respect to the analysed parameter. Assuming that the model
parameters do not depend on time for steady flow, after differentiating equations (1)–(5) in relation
to the parameter marked as Cm , the following system of differential equations is obtained:

∇·ũm =0 (15)

�((ũm ·∇)u+(u·∇)ũm)=−∇ p̃m+ �̃m�u+(�+�t )�ũm (16)

�((ũm ·∇)k+(u·∇)k̃m) =
(

∇ �̃m
�k

)
·(∇k)+ �̃m

�k
�k+

(
∇ �t

�k

)
·(∇k̃m)

+ �t
�k

�k̃m+�P̃km−��̃m+qkm (17)
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�((ũm ·∇)�+(u·∇)�̃m) =
(

∇ �̃m
��

)
·(∇�)+ �̃m

��
��+

(
∇�t

��

)
·(∇�̃m)+ �t

�k
��̃m

+�C�1
�

k
P̃km+ �PkC�1−2��

k
�̃m− �PkC�1�−��2

k2
k̃m+q�m (18)

�̃m−�C�
2k

�
k̃m+�C�

k2

�2
�̃m =q�m (19)

where the derivative production may be expressed using the following equations:

�P̃km = �̃mS
2+2�t S̃

2, S̃≡
√
2si j s̃i jm, s̃i j = 1

2

(
�ũim
�x j

+ �ũ jm

�xi

)
(20)

and qkm , q�m and q�m are terms of the right-hand side and their relationship to each parameter is
described with the following equations:

• for the C�1 parameter:

q�1= Pk
�

k
(21)

• for the C�2 parameter:

q�2=−�
�2

k
(22)

• for the C� parameter:

q�3=�
k2

�
(23)

• for the �k parameter:

qk4=−
(

∇ �t
�2k

)
·(∇k)− �t

�2k
�k (24)

• for the �� parameter:

q�5=−
(

∇ �t
�2�

)
·(∇�)− �t

�2�
�� (25)

The system of differential equations (15)–(19) needs to be supplemented with boundary condi-
tions resulting from assuming the actual boundary condition types for the analysed flow. Thus,
assuming for the main problem that the properties are constant at the edge means that the sensi-
tivity coefficient equals zero ( p̃m =0, ũ1m =0, ũ2m =0, k̃m =0, �̃m =0 and �̃m =0) because the flow
properties do not depend on the model parameters. Consequently, if we assume that at boundary
conditions corresponding derivatives of flow properties s with respect to the coordinates xi are zero:

�s
�xi

=0 (26)
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then the derivatives of the sensitivity coefficients s̃m in relation to these coordinates xi are also
zero:

�2s
�xi�Cm

= �s̃
�xi

=0 (27)

Additionally, for the areas near the wall, Equations (15)–(19) of the system should be modified
by considering the boundary layer model, which was used to determine the flow properties.

In order to solve the system of Equations (15)–(19), it would be better to solve an earlier
main problem of the flow with the nominal parameter values (described by Equations (1)–(5)),
and only then can the problem of sensitivity analysis be solved with similar numerical methods
and the suitable boundary conditions. Of course, the sets of Equations (1)–(5) and (15)–(19)
can be solved simultaneously, but it causes an increase in the computer memory amount needed
and quadruple growth of the calculation time in comparison with the set of five differential
equations.

The equations presented in this paper are prepared by the author (comp. Błazik-Borowa [20])
irrespective of Colin et al. [21], where sensitivity analysis for flows is considered as well. The
differences between their researches and obtained solutions are as follows:

• Colin et al. [21] performed an analysis for temperature flows and the author of this paper for
the flow without temperature, but for high Reynolds number;

• Colin et al. [21] determined the sensitivity coefficients for the logarithmic form of equations
for turbulence kinetic energy and dissipation rate;

• Colin et al. [21] applied the forward sensitivity analysis based on the finite element method
whereas the author proposed two methods of obtaining the sensitivity coefficients: a finite
difference approximation to the sensitivity coefficients and the forward sensitivity analysis
based on the finite volume method.

The sensitivity analysis has many applications in the engineering practice. For example, in
this paper the sensitivity analysis of the channel flow is made and on the basis of the results of
this analysis the assessment of boundary layers with regard to the sensitivity to turbulence model
parameters is performed. In other papers of the author [22–24] the sensitivity analysis has been
used for the assessment of the sensitivity of the flow around a single and two square cylinders
to the model parameters and the determination of the influence of the input flow properties on
quality results. Colin et al. [21] proposed the application of the sensitivity analysis to identify
key parameters for controlling the flow and to estimate the errors of the skin frictions and Staton
number for the heated backward facing step.

4. THE CHANNEL FLOW SENSITIVITY TO THE PARAMETERS
OF THE k–� METHOD

4.1. Results of the channel flow calculations

Further analyses will be made for the flow in a square pipe (channel). Results of tests for this
problem have been described in detail in papers [25, 26]. Dimensions of the channel, the grid of
the finite volume method and boundary conditions for this problem are presented in Figure 1. Flow
properties at velocity inlet no. 1 are constant values of the components of velocity u0=u01=6.7m/s
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Wall OutflowVelocity inlet

Wall
uo

1.27 m
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7
m

the B volume

C

C
the A volume

Figure 1. The model grid for the finite volume method with dimensions and
boundary conditions for the channel flow.

and u02=0m/s, the turbulence intensity Iu =4.4% and the hydraulic diameter Dh =0.127 m,
which gives the Reynolds number Re=55000. The model contains 1440 cells, 1525 nodes and
2964 edges. As nominal parameter values, the ones suggested as default by FLUENT, i.e. C�1=
1.44,C�2=1.92,C� =0.09,�k =1.0 and �� =1.3, have been assumed.

Following paper [25], Figure 2 presents the research results presented in the paper by Viegas
et al. [26]. The graphs include measurement results in the channel and the calculation results in
the C cross section at about 3

4 length of the channel (comp. Figure 1) for three different models
of boundary layers. In Figure 3 the differences between the measurement and calculation results
for the velocity and turbulence kinetic energy for three models of boundary layers are shown
as well.

As it is seen in Figures 2(b) and (d) and 3, in the middle of the graphs, at y=0, a fairly good
correspondence of calculations and tests was obtained, whereas in the boundary layer, the calculated
turbulence kinetic energy is almost twice as large as the one obtained by the measurement. Kim
[25] also gave the measured value of the pressure gradient along the wall that equals −1.4Pa/m.
From calculations with the first two models, i.e. using the boundary layer function, the gradient of
−2.06Pa/m was obtained, whereas the third model gave the gradient of −2.18Pa/m. This means
that the pressure gradient is, unfortunately, incorrectly determined.

4.2. The channel flow sensitivity analysis

In order to determine the sensitivity coefficients of six flow properties for five parameters for the
standard k–� turbulence model, the finite difference approach will be used. This method requires
evaluation of increments of the model parameters �Cm for which sensitivity analysis is correct
and therefore many calculations were made for different values of the model parameters to check
the shape of flow property functions when changing these parameters. Figures 4–8 present graphs
of flow properties variation depending on the model parameters at two points: near the wall, the
volume A and in the middle of flow, the volume B, for the problem of Figure 1 with boundary
layer model no. 1. The cells, in which the calculation results are analysed, are located at about 3

4
length of the channel where the vertical profile is fully formed. In this case, the graphs around the
nominal parameter values are almost linear, which means that the calculations made with the finite
difference approximation at �C�1=�C�2=��k =��� =0.1,�C� =0.01 will give correct results
in relation to the flow properties sensitivity.

Based on the sensitivity analysis, 30 fields of sensitivity coefficients are obtained for one problem.
Examples of fields for the whole flow are presented in Figures 9–13. Relative extreme values are
compared in Figures 14–16 and graphs of all sensitivity coefficients in the C cross section of the
channel are presented in Figures 17–22.
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Figure 2. The calculation results of flow properties at the cross section of the channel at u01=6.7m/s,
Re=55000 and parameters: C� =0.09,C�1=1.44,C�2=1.92,�k =1.0 and �� =1.3: (a) the pressure p;
(b) the velocity u1; (c) the velocity u2; (d) the turbulence kinetic energy k; (e) the dissipation rate �
of turbulence kinetic energy; and (f) the turbulence dynamic viscosity �t . •, research results based on
paper [25]; calculation results for: �, model no. 1 for the boundary layer; �, model no. 2 for the boundary

layer and ◦, model no. 3 for the boundary layer.

The interpretation of the results of the sensitivity analysis is as follows: as the sensitivity
coefficients are derivatives of properties with respect to the parameters, the negative values of
coefficients mean that the flow properties are decreasing functions of the parameters and the positive
values mean they are increasing functions. The sensitivity indicates the qualitative changes of the
flow properties only. In the case of small changes in the parameter, it is possible to determine the
approximate property value that will be obtained from the problem with new values of parameters.
For example, k̃C� =−2.767m2/s2 from the table in Figure 14 means that increasing the C�
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Figure 3. The differences between measurements and calculations for the velocity (�u1) and the turbulence
kinetic energy (�k) along the C cross section of the channel. ——, model no. 1 for the boundary layer;

- - - - - model no. 2 for the boundary layer and – · – ·– model no. 3 for the boundary layer.

parameter by 10%, i.e. changing it by 0.009, may result in a decrease in the turbulence kinetic
energy by 0.0249 in the volume of the largest sensitivity. In practice, this means that within a small
range around the nominal model parameter values the obtained results may be corrected so that
they are closer to the measurement results, of course, if the first set of nominal parameter values is
close to correct values. It can be assured with the determination of nominal parameter values from
Equations (6)–(11) and the comparison of obtained values of parameters to the ones used by other
researchers.

Moreover the particular parameters can have a quite different influence on the numerical solution.
Therefore, it is worth checking the total influence of all model parameters on calculation results
and it can be calculated from the following equations:

�p= p̃C�1dC�1+ p̃C�2dC�2+ p̃C�dC�+ p̃�kd�k+ p̃��d�� (28)

�u1= ũ1C�1dC�1+ ũ1C�2dC�2+ ũ1C�dC�+ ũ1�kd�k+ ũ1��d�� (29)

�u2= ũ2C�1dC�1+ ũ2C�2dC�2+ ũ2C�dC�+ ũ2�kd�k+ ũ2��d�� (30)

�k= k̃C�1dC�1+ k̃C�2dC�2+ k̃C�dC�+ k̃�kd�k+ k̃��d�� (31)

��= �̃C�1dC�1+ �̃C�2dC�2+ �̃C�dC�+ �̃�kd�k+ �̃��d�� (32)

��t = �̃C�1
dC�1+ �̃C�2

dC�2+ �̃C�
dC�+ �̃�kd�k+ �̃��

d�� (33)

where dC�1,dC�2,dC�,d�k,d�� are analysed increments of the parameters. The results, presented in
Figure 2, are calculated for dC�1=0.05C�1,dC�2=0.05C�2,dC� =0.05C�,d�k =0.05�k and d�� =
0.05��. The increments of flow properties, which are determined based on the above equations,
are shown in Figure 23.
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Figure 4. The graphs of the flow properties in the function of the C�1 parameter: (a) the pressure; (b) the
component of velocity along the model; (c) the component of velocity in the direction perpendicular to
the length of the model; (d) the turbulence kinetic energy; (e) the turbulence dissipation rate; and (f) the

turbulence dynamic viscosity. �, results of the A volume and �, results of the B volume.

It should be noted that the change of model parameters in the main problem causes the change
of sensitivity coefficients. In Figure 24 the graphs of the sensitivity coefficients as functions of
parameters are shown. As it may be seen the changes of values of all parameters caused the
significant changes of the sensitivity coefficients. Hence next revision of numerical results with
regard to parameters has to be made with new values of sensitivity coefficients. Revisions for
small increments of the parameters can be made a few times to obtain the best results. It seems
that such calibration of parameters in order to improve the calculation results is possible, but it is
a very broad problem and can be the subject of another paper.

Figures 9–13 present selected examples of sensitivity coefficient fields. Forms of fields for indi-
vidual sensitivity coefficients are not, practically, different for different models of the boundary
layer. On the other hand, there are significant differences between coefficients of individual proper-
ties. The velocity sensitivity value increases along the channel, sensitivity of the turbulence kinetic
energy assumes significant values in the area of profile forming, i.e. in the first part of the channel,
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Figure 5. The graphs of the flow properties in the function of the C�2 parameter: (a) the pressure; (b) the
component of velocity along the model; (c) the component of velocity in the direction perpendicular to
the length of the model; (d) the turbulence kinetic energy; (e) the turbulence dissipation rate; and (f) the

turbulence dynamic viscosity. �, results of the A volume and �, results of the B volume.

and then it decreases. The dissipation is the most sensitive to the model parameters at the channel
inlet.

Within the initial area where the velocity profile shape changes, all flow properties are very
sensitive to the model parameters. Unfortunately, the areas of extreme values are usually small,
which means that they are invisible on the contour maps. Figures 14–16 present relative and
absolute extreme values that mostly correspond to the volumes near the wall of the first part of
the channel. The figures present the relative values with regard to the value at the inflow and are
described in the following manner:

• relative sensitivity coefficients of the p pressure:

�
pm =

�p
�Cm

0.5�u20
= p̃m

0.5�u20
(34)
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Figure 6. The graphs of the flow properties in the function of the C� parameter: (a) the pressure; (b) the
component of velocity along the model; (c) the component of velocity in the direction perpendicular to
the length of the model; (d) the turbulence kinetic energy; (e) the turbulence dissipation rate; and (f) the

turbulence dynamic viscosity. �, results of the A volume and �, results of the B volume.

• relative sensitivity coefficients of the u1 velocity component:

�
u1m =

�u1
�Cm

u0
= ũ1m

u0
(35)

• relative sensitivity coefficients of the u2 velocity component:

�
u2m =

�u2
�Cm

u0
= ũ2m

u0
(36)
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Figure 7. The graphs of the flow properties in the function of the �k parameter: (a) the pressure; (b) the
component of velocity along the model; (c) the component of velocity in the direction perpendicular to
the length of the model; (d) the turbulence kinetic energy; (e) the turbulence dissipation rate; and (f) the

turbulence dynamic viscosity. �, results of the A volume and �, results of the B volume.

• relative sensitivity coefficients of the k turbulence kinetic energy:

�

km =
�k

�Cm

k0
= k̃m

k0
(37)

• relative sensitivity coefficients of the � dissipation rate of turbulence kinetic energy:

��m =
��

�Cm

�0
= �̃m

�0
(38)
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Figure 8. The graphs of the flow properties in the function of the �� parameter: (a) the pressure; (b) the
component of velocity along the model; (c) the component of velocity in the direction perpendicular to
the length of the model; (d) the turbulence kinetic energy; (e) the turbulence dissipation rate; and (f) the

turbulence dynamic viscosity. �, results of the A volume and �, results of the B volume.

(a)

(b)

(c)

Figure 9. The fields of the pressure sensitivity to the C�1 parameter at u0=6.7m/s,Re=55000
and the parameters C� =0.09,C�1=1.44,C�2=1.92,�k =1.0 and �� =1.3 for (a) model no. 1;

(b) model no. 2; and (c) model no. 3.
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(a)

(b)

(c)

Figure 10. The fields of the velocity sensitivity to the C�2 parameter at u0=6.7m/s,Re=55000
and the parameters C� =0.09,C�1=1.44,C�2=1.92,�k =1.0 and �� =1.3 for (a) model no. 1;

(b) model no. 2; and (c) model no 3.

(a)

(b)

(c)

Figure 11. The fields of the sensitivity of a turbulence kinetic energy to the �k parameter at u0=6.7m/s,
Re=55000 and the parameters C� =0.09,C�1=1.44,C�2=1.92,�k =1.0 and �� =1.3 for (a) model no. 1;

(b) model no. 2; and (c) model no. 3.

(a)

(b)

(c)

Figure 12. The fields of the sensitivity of a dissipation rate to the �� parameter at u0=6.7m/s,
Re=55000 and the parameters C� =0.09,C�1=1.44,C�2=1.92,�k =1.0 and �� =1.3 for (a) model no. 1;

(b) model no. 2; and (c) model no. 3.
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(a)

(b)

(c)

Figure 13. The fields of the sensitivity of a turbulence dynamic viscosity to the C� parameter at u0=6.7m/s,
Re=55000 and the parameters C� =0.09,C�1=1.44,C�2=1.92,�k =1.0 and �� =1.3 for (a) model no. 1;

(b) model no. 2; and (c) model no. 3.

• relative sensitivity coefficients of the �t turbulence dynamic viscosity:

��m =
��t
�Cm

�t0
= �̃m

�t0
(39)

where properties at the inflow are the velocity u0=6.7m/s, the turbulence kinetic energy k0=
0.13036m2/s2, the dissipation of turbulence kinetic energy �0=0.91537m2/s3 and the turbulence
dynamic viscosity �t0=0.002047Ns/m2.

In the graphs of Figures 14–16 the subsequent groups of data corresponding to the relative
sensitivity coefficients of the properties are noted on the vertical axis. The descriptions of sensitivity
coefficients as derivatives in relation to individual parameters are included in the keys to the figures.
The comparison of the sensitivity value to the inflow value allows for comparing all sensitiveness
of flow properties. In the tables of sensitivity coefficients, the largest values of sensitivity are shown
in bold. The tables and graphs in the Figures 14–16 indicate that the most sensitive flow property to
the model parameters is dissipation rate, followed by turbulence dynamic viscosity and turbulence
kinetic energy with significantly smaller values of sensitivity. The flow properties depend, to the
greatest extent, on the value of the C� parameter. The sensitivity to the parameters C�1 and C�2
is significantly smaller, but it should be noted that these parameters are also significantly bigger
than the C� parameter. It means that the changes of parameters remaining in the same ranges (for
example, 10%) cause similar changes of the flow properties. The parameters �k and �� that are
responsible for diffusion do not significantly affect the flow properties. The above conclusions are
largely applicable to all calculations made, regardless of the boundary layer model.

Figures 9–13 present only examples of the sensitivity coefficients distribution. Changes in all
sensitivity coefficients in the channel cross section are presented in Figures 17–22. These results
apply to the C cross section of the channel, i.e. from the cross section for which the graphs of
Figure 2 were made. The analysed flow is the symmetrical problem with regard to the axis along
the channel. The graphs of coefficients in Figures 17–22 show that the sensitivity analysis of the
main problem is also a symmetrical exercise.

Moreover Figures 16–21 indicate that the results obtained in the middle part of the cross section
for y∈(−0.03m;0.03m) are independent of the parameters. This conclusion does not apply to
pressure, as the sensitivity of this property is almost constant throughout the whole cross section,
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Figure 14. Extreme values of relative and absolute sensitivity coefficients for the channel flow, with the
use of model no. 1 for the boundary layer.
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Figure 15. Extreme values of relative and absolute sensitivity coefficients for the channel flow, with the
use of model no. 2 for the boundary layer.
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Figure 16. Extreme values of relative and absolute sensitivity coefficients for the channel flow, with the
use of model no. 3 for the boundary layer.
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Figure 17. The sensitivity coefficients of pressure p along the channel cross section. ——,
model no. 1 for the boundary layer; - - - - -, model no. 2 for the boundary layer and –·–·–,

model no. 3 for the boundary layer.
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Figure 18. The sensitivity coefficients of the u1 velocity component along the channel cross
section. ——, model no. 1 for the boundary layer; - - - -, model no. 2 for the boundary layer

and –·–·–, model no. 3 for the boundary layer.

and to two sensitivity coefficients of the turbulence dynamic viscosity ��t/�C�2 and ��t/�C�.
The form of the graph ��t/�C� arises from Equation (5), which describes the turbulence dynamic
viscosity and includes the C� parameter, as well as from Equation (18). The former appears to show
that if the energy and dissipation sensitivity coefficients are approximately zero, the sensitivity
coefficients of the turbulence dynamic viscosity is close to zero as well, excluding the sensitivity
in relation to the C� parameter.

A clear increase in sensitivity of most properties in the boundary layer may be detected in
the graphs, whereas such coefficients as �u1/�C�1, �u1/�C�2, �k/�C� and all sensitivity coeffi-
cients of the dissipation rate assume their highest values near the wall, but there are also such
coefficients that achieve their maximum in the area of the flow transition from the boundary
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Figure 19. The sensitivity coefficients of the u2 velocity component along the channel cross
section. ——, model no. 1 for the boundary layer; - - - - -, model no. 2 for the boundary layer

and –·–·– model no. 3 for the boundary layer.
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Figure 20. The sensitivity coefficients of the k turbulence kinetic energy along the channel cross
section. ——, model no. 1 for the boundary layer; - - - - -, model no. 2 for the boundary layer;

–·–·– model no. 3 for the boundary layer.

layer to the free stream. The latter coefficients include, but are not limited to, the following:
�k/��k,�k/���,��t/�C�1,��t/��k,��t/���.

When comparing the results of calculations and measurements shown in Figures 2 and 3 to
sensitivity analysis results from Figures 17–22 and 23, correlation between the areas of incorrect
results and the graph areas of high sensitivity values is observable. The largest discrepancies
between the calculations and measurements for the u1 velocity are visible at y≈±0.04 and
±0.06m. This corresponds to the area where velocity sensitivity coefficients assume significant
values, even up to 50% of their maximums, present at the wall. Moreover, a clear connection
between the error in determining the turbulence kinetic energy and the turbulence kinetic energy
sensitivity to the parameters is also observable (comp. Figures 3 and 20). It probably comes from
the fact that the regions of significant sensitivities correspond to places with high gradients of flow
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Figure 21. The sensitivity coefficients of the � dissipation of turbulence kinetic energy
along the channel cross section. ——, model no. 1 for the boundary layer; - - - - -, model

no. 2 for the boundary layer and –·–·–, model no. 3 for the boundary layer.
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Figure 22. The sensitivity coefficients of the �t turbulence dynamic viscosity along the channel
cross section C . ——, model no. 1 for the boundary layer; - - - - -, model no. 2 for the boundary

layer and –·–·–, model no. 3 for the boundary layer.

properties. The model parameters are multipliers of the terms of Equations (1)–(5), which usually
contain derivatives of flow properties with regard to coordinates. The high values of the terms cause
the parameter from this term to significantly influence the results and the parameters from the small
terms that have a smaller influence on them. Hence the high sensitivity can indicate significant
errors of calculations that can be caused by both the wrong assumption of model parameters and
the numerical errors that always exist for high gradients of approximated properties. Therefore the
results of sensitivity analysis can be applied by the user of the CFD program to find the places
where significant errors can be expected. For example, the dissipation rate is the most sensitive
at the corners of the square and probably the values of this flow property are evaluated with big
errors here.
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Figure 23. The altogether influence of model parameters on flow properties (�p for pressure, �u1 for
the u1 velocity, �u2 for the u2 velocity, �k for the turbulence kinetic energy, �� for the dissipation and
��t for the turbulence dynamic viscosity) at the increase in parameters by 5%. ——, model no. 1 for the
boundary layer; - - - - -, model no. 2 for the boundary layer and –·–·–, model no. 3 for the boundary layer.

However, the conclusion that says that the quality of solution is worst for highest sensitivity is
not right for the problems with different FVM meshes and different methods of description of flow
properties, which can cause the change of their derivates in a space. For example, if because of
too sparse mesh, the curvature of graphs of the flow properties decreases, we obtain the decrease
in coefficients sensitivity as the result. In this case, the smaller sensitivity does not mean the better
solution. The problem of the correlation between the quality solution and results of sensitivity
analysis is very wide and it can be the subject of an other paper. This problem is initially described
in the author’s paper [24] and it will be developed in later researches.
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Figure 24. The graphs of exemplary sensitivity coefficients as functions of
parameters C�1 and C�2 at the B volume.

4.3. The comparison of boundary layer models

The calculations were made with the use of three different boundary layer models described in
Section 2.2. The calculation results do not differ much (Figure 2). The differences are larger in the
graphs of sensitivity coefficients (Figures 9–22). The calculation results for models no. 1 and 2 are
very similar and the only exception is pressure where the results for all models are distinguished.
Hence further comparative analyses concern difference between the first two models and model
no. 3.

The most significant differences are noticeable in the graphs of pressure (Figure 2) and its
sensitivity (Figures 20 and 23(a)). It seems that the oldest model of boundary layer, i.e. model
no. 1 is the least sensitive to the changes of parameters. It should be noted that the value of the
particular sensitivity coefficient obtained for different boundary layers is usually of the same sign.
In this case the pressure sensitivity coefficients are exceptional because the sensitivities for the
first two boundary layer models have the same sign or if they have different signs their values do
not significantly differ, whereas the results for model no. 3 have the opposite sign. The exception
is the �p/��k coefficient for which very clear difference in the value is seen.

In the case of velocity, results obtained with the use of model no. 3 are different from the others
in the region from y≈±0.04m to the walls, but the calculation errors for this model are the smallest
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in this area. However, in the middle of the channel cross section the calculation results from model
no. 3 are the worst. The biggest differences between the graphs of the sensitivity coefficients for
the three models are seen close to the wall. In this region for three parameters (C�1,C�2,C�),
sensitivity decreases when the model is used and for the remaining two (�k,��) it increases. The
graphs of the total influence of all parameters on the u1 velocity, shown in Figure 23(b), is similar
as the graph in Figure 3. The change of parameters can deteriorate the quality of solution at the
middle of the channel and improve at the wall.

Another situation is for turbulence kinetic energy. The difference between calculation results
obtained from different models is also the highest in the region from y≈±0.04m to the walls,
but the differences between calculation and measurements results are also in this region and they
are the highest for model no. 3. As it was earlier noted bigger differences between measurements
in wind tunnels and numerical results usually are for the bigger values of sensitivity coefficients
and it is a fact that bigger sensitivity exists in the region of significant errors of calculations. The
comparison of the sensitivity analysis results for three boundary layer models makes us see that for
two parameters (C�1, C�2), sensitivity decreases when model no. 3 is used and for the remaining
ones (C�,�k,��) it increases and the total influence of model parameters on solutions is when
using model no. 3 for which the biggest calculation errors are obtained.

The largest errors in calculations of turbulence energy were obtained in the case of boundary
layer model no. 3 for which the energy sensitivity is much larger than for the remaining models.
The velocity calculation results are closer to the measurement results for model no. 3 than for
other ones. Here the velocity sensitivities are lower for model no. 3 than models no. 1 and 2
as well. It confirms the dependence of the sensitivity to model parameters and quality of the
numerical solutions. It is also seen that the problem of artificial simplification for the functions of
the flow properties, which is described in the previous section does not exist at the comparison of
the boundary layer models. Hence it can be noted that the dissipation is probably evaluated with
higher error level for model no. 3 than for others because the increment of dissipation �� taking
into consideration the total influence of the model parameters is the highest for this model.

Unfortunately in this paper only three boundary layer models are researched and as it is seen
in Figure 2 and the distributions of the sensitivity coefficients close to wall, these models are not
perfect. It is impossible to affirm which of the methods is the best for the channel flow. The results
obtained with use of models no. 1 and 2 are not different both for the flow properties and for the
sensitivity coefficients. The velocity and probably turbulence viscosity are best modeled by model
no. 3, but the remaining flow properties evaluated with the use of this model are burdened with
higher errors than for other models. Therefore, the choice of the boundary layer model depends
on which of flow properties are most important for the researcher. For the case when the aim of
the calculation is the determination of the velocity field close to the wall without taking interest
in remaining properties it can be noted that model no. 3 is the best, but for other situations this
model is not perfect and model no. 1 or 2 should be preferably used.

5. CONCLUSIONS

In this paper the sensitivity analysis of a numerical solution to the parameters of the k–� turbulence
model for channel flow is made. The main conclusion is that numerical results obtained by using
the k–� turbulence model are very sensitive to the semi-empirical parameters: C�1, C�2,C�,�k
and ��. In the analysed problem, the dissipation rate of turbulence kinetic energy was found to be
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the most sensitive to the parameters of the k–� model. Not only can this property be determined
with a significant error in the calculations but it is also difficult to determine in tests. It seems
that model verification should be carried out not only with regard to the flow velocity and its
kinetic energy but also mainly by comparing calculation results with direct results of the turbulence
dissipation rate tests.

All properties are mostly sensitive to the C� parameter, i.e. the coefficient defining the relation
(comp. Equation (5)) between the kinetic energy and the dissipation rate on one side and turbulence
viscosity on the other. Such a result confirms the importance of correct description of the turbulence
viscosity in all problems of fluid mechanics and its large significance in obtaining the correct final
result.

Only three models of the boundary layer are analysed in this paper. In the analysed problem of
the channel flow, the use of more complicated and numerically time-consuming models does not to
improve the results. Obviously, in the case of problems using different, denser grids for the finite
volume methods, this statement is likely to be false. It seems, however, that by introducing complex
models the sensitivity of results to parameters does not decrease; in most cases it increases. This
means that the calibration of parameters was made with the assumptions used with the standard k–�
model for the case of the boundary layer, with a logarithmic velocity profile and the assumption of
equilibrium between the energy production and the dissipation rate. Omitting these simplifications
in more complicated models of turbulence and the boundary layer makes the properties more
sensitive to the model parameters.

No analysis made for boundary layer model is perfect but it cannot be affirmed which of them
is the best. The choice of the boundary layer model depends on which of the flow properties are
most important for the researcher. For the case when the velocity or turbulence viscosity is the
most important property model no. 3 can be used but to determine other properties model no. 1
or 2 seems to be better.

The presented analyses were performed at one set of the nominal parameter values which is the
most commonly applied and for one exercise, i.e. the flow channel. In this case the function of flow
properties with regard to the model parameters is nearly linear and the finite difference approach
can be used to determine sensitivity coefficients. For the more complex problems, areas with very
high gradients of flow properties with regard to the model parameters can exist. This means that
the finite difference approach cannot be used. Additionally, the computer calculations of such
problems probably should be made at other nominal parameter values. Moreover the sensitivity
coefficients calculated at one nominal parameter value cannot be used for other model parameters,
because they depend on model parameters, which may be seen in Figure 23.

It should be noted that the above conclusions concerning the results of the sensitivity analysis
cannot be automatically used for other flow problems, but the calculation results presented in the
author’s papers [22, 23] confirm them nearly completely.

This paper presents calculation results that reveal that there is a correlation between the sensitivity
coefficients and the quality of the results obtained. For the bigger values of sensitivity coefficients,
the bigger differences between measurements in wind tunnels and numerical results should be
expected. The model parameters are multipliers for the terms of Equations (1)–(5). The influence of
these terms on the solution depends on the complexity of analysed problem. The high values of the
terms cause significant influence of the parameter from this term on the results and the parameters
from the small terms have smaller influence on these results. As the terms of the equations usually
contain derivatives of flow properties with regard to coordinates, a similar relationship exists
between the sensitivity of the solution to the model parameters and these derivatives. It means that
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for one flow property the model parameter with high and small influences exists and, sometimes,
the correlation between the quality of the solution and sensitivity coefficients cannot be seen. In
such a situation the global influence can be calculated as it is proposed in the previous section.

Thus, it may be stated that the analysis of sensitivity coefficient fields allows checking solution
reliability and indicating the areas of the greatest calculation difficulties. The sensitivity coefficient
fields may also be used to determine areas where the model grid should be denser. The sensitivity
analysis results may also be helpful in determination of the parameters for the k–� model on the
basis of wind tunnel tests made for various problems, which may increase the area of the k–�
turbulence model usability.

In this paper the sensitivity analysis of the channel flow to the parameters of the k–� method
have been performed using the finite difference approximation to the sensitivities coefficients. In
the author’s next paper the results of the use of the forward sensitivity analysis method to the
channel flow will be presented. These results allow to compare both methods of determining the
sensitivity coefficients.

Using each of the new methods for solving the main problem requires development of the
sensitivity analysis program. An ideal solution would be if commercial programs for fluid mechanics
had modules to analyse the sensitivity of results to the parameters of the turbulence model.
This would enable the software users to check the result obtained with regard to the parameters
assumed and concerning both the standard k–� model and other turbulence models that comprise
semi-empirical coefficients.
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